Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision | |||
learning:tla_summary [2024/10/07 16:51] – fponzi | learning:tla_summary [2024/10/07 16:52] (current) – old revision restored (2024/09/28 17:58) fponzi | ||
---|---|---|---|
Line 7: | Line 7: | ||
---- | ---- | ||
- | ====== Summary of TLA+ ====== | ||
- | ===== Module-Level Constructs | + | ====== Summary of TLA { }^{+} ====== |
- | **module M** | + | |
+ | | ||
+ | | ||
+ | | ||
+ | * Temporal Operators | ||
+ | * User-Definable Operator Symbols | ||
+ | * Precedence Ranges of Operators | ||
+ | * Operators Defined in Standard Modules. | ||
+ | * ASCII Representation of Typeset Symbols 1 | ||
- | Begins the module or submodule named M. | + | ===== Module-Level Constructs ===== |
- | **extends M1, ..., Mn** | + | ===== \Gamma ===== |
- | Incorporates | + | MODULE $M$Begins |
- | **constants C1, ..., Cn** | + | EXTENDS $M_{1}, \ldots, M_{n}$ |
- | Declares | + | Incorporates |
- | **variables x1, ..., xn** | + | CONSTANTS $C_{1}, \ldots, C_{n}^{(1)}$ |
- | Declares the xj to be variables (parameters | + | Declares the $C_{j}$ |
- | **assume P** | + | $$ |
+ | \text { VARIABLES } x_{1}, \ldots, x_{n}^{(1)} | ||
+ | $$ | ||
- | Asserts P as an assumption. | + | Declares the $x_{j}$ to be variables (parameters that are flexible variables). |
- | **F(x1, ..., xn) Δ = exp** | + | ===== ASSUME P ===== |
- | Defines F to be the operator such that F(e1, ..., en) equals exp with each identifier xk replaced by ek. (For n = 0, it is written F Δ = exp.) | + | Asserts $P$ as an assumption. |
- | **f[x ∈ S] Δ = exp** | + | $F\left(x_{1}, |
- | Defines | + | Defines |
- | **instance M with p1 ← e1, ..., pm ← em** | + | $f[x \in S] \triangleq \exp ^{(2)}$ |
- | For each defined operator F of module M, this defines F to be the operator whose definition is obtained from the definition of F in M by replacing each declared constant or variable pj of M with ej. (If m = 0, the " | + | Defines $f$ to be the function with domain $S$ such that $f[x]=\exp$ for all $x$ in $S$. (The symbol $f$ may occur in exp, allowing a recursive definition.) |
- | **theorem P** | + | - The terminal S in the keyword is optional. |
+ | - $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where $v$ is either a comma-separated list or a tuple of identifiers. | ||
- | Asserts that P can be proved from the definitions and assumptions of the current module. | + | INSTANCE $M$ WITH $p_{1} \leftarrow e_{1}, \ldots, p_{m} \leftarrow e_{m}$ |
- | **local def** | + | For each defined operator $F$ of module $M$, this defines $F$ to be the operator whose definition is obtained from the definition of $F$ in $M$ by replacing each declared constant or variable $p_{j}$ of $M$ with $e_{j}$. (If $m=0$, the WITH is omitted.) $N\left(x_{1}, |
- | Makes the definition(s) | + | For each defined operator $F$ of module $M$, this defines $N\left(d_{1}, \ldots, d_{n}\right)!F$ to be the operator whose definition is obtained |
- | ===== The Constant Operators ===== | + | THEOREM $P$ |
- | === Logic === | + | Asserts that $P$ can be proved from the definitions and assumptions of the current module. |
- | <m> ∧ ∨ ¬ ⇒ ≡ \text{true} \text{false} \text{boolean} \</m> | + | |
- | < | + | LOCAL def |
- | < | + | Makes the definition(s) of def (which may be a definition or an INSTANCE statement) local to the current module, thereby not obtained when extending or instantiating the module. |
- | < | + | Ends the current module or submodule. |
- | === Sets === | + | ===== The Constant Operators ===== |
- | <m>= \neq ∈ \notin ∪ ∩ ⊆ \setminus </m> | + | |
- | <m>\{e1, ..., en\} [\text{Set consisting of elements | + | {{https:// |
- | < | + | ===== Sets ===== |
- | <m>\subset S [\text{Set of subsets of } S]</ | + | $=\neq \in \cup$. |
- | <m>\text{union} S [\text{Union of all elements | + | $\left\{e_{1}, \ldots, e_{n}\right\} \quad$ [Set consisting |
- | === Functions === | + | $\{x \in S: p\}$ (2) [Set of elements $x$ in $S$ satisfying $p$ ] |
- | < | + | |
- | <m>\text{domain} f [\text{Domain of function | + | $\{e: x \in S\}^{(1)} \quad$ [Set of elements $e$ such that $x$ in $\left.S\right]$ |
- | <m>[x ∈ S \mapsto e] [\text{Function } f \text{ such that } f[x] = e \text{ for } x ∈ S]</m> | + | SUBSET $S \quad$ [Set of subsets of $S$ ] |
- | <m>[S \to T] [\text{Set | + | UNION $S \quad[$ Union of all elements of $S]$ |
- | === Records | + | ===== Functions ===== |
- | < | + | |
- | <m>[h1 \mapsto e1, ..., hn \mapsto | + | $$ |
+ | \begin{array}{ll} | ||
+ | f[e] & {[\text { Function application] }} \\ | ||
+ | \text { DOMAIN } f & {[\text { Domain of function } f]} \\ | ||
+ | {[x \in S \mapsto | ||
+ | {[S \rightarrow T]} & {[\text { Set of functions } f \text { with } f[x] \in T \text { for } x \in} \\ | ||
+ | {\left[f \text { EXCEPT }!\left[e_{1}\right]=e_{2}\right]^{(3)}} & {\left[\text { Function } \widehat{f} \text { equal to } f \text { except } \widehat{f}\left[e_{1}\right]=e_{2}\right]} | ||
+ | \end{array} | ||
+ | $$ | ||
- | === Tuples | + | ===== Records ===== |
- | < | + | |
- | <m>\langle e1, ..., en \rangle | + | $\begin{array}{ll}e |
- | <m>S1 \times ... \times Sn [\text{The set of all n-tuples with i-th component in } S_i]</ | + | ===== Tuples ===== |
- | ===== Miscellaneous Constructs ===== | + | $$ |
+ | \begin{array}{ll} | ||
+ | e[i] & {\left[\text { The } i^{\text {th }} \text { component of tuple } e\right]} \\ | ||
+ | \left\langle e_{1}, \ldots, e_{n}\right\rangle & {\left[\text { The } n \text {-tuple whose } i^{\text {th }} \text { component is } e_{i}\right]} \\ | ||
+ | S_{1} \times \ldots \times S_{n} & \text { [The set of all } \left.n \text {-tuples with } i^{\text {th }} \text { component in } S_{i}\right] | ||
+ | \end{array} | ||
+ | $$ | ||
- | **if p then e1 else e2** [e1 if p is true, else e2] | + | - $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where $v$ is either a comma-separated list or a tuple of identifiers |
+ | - $x$ may be an identifier or tuple of identifiers. | ||
- | **case p1 → e1 ... pn → en** | + | (3)! $\left[e_{1}\right]$ or !.h may be replaced by a comma separated list of items $!a_{1} \cdots a_{n}$, where each $a_{i}$ is $\left[e_{i}\right]$ or.$h_{i}$. |
- | **case p1 → e1 ... pn → en 2 other → e** | + | ===== Miscellaneous Constructs ===== |
- | **let d1 Δ = e1 ... dn Δ = en in e** | + | {{https:// |
===== Action Operators ===== | ===== Action Operators ===== | ||
- | <m>e′ [\text{The value of } e \text{ | + | ^$e^{\prime}$ |
- | + | |$[A]_{e}$ | |
- | <m>[A]e [A \lor (e′ = e)]</m> | + | |$\langle A\rangle_{e}$ |$\left[A \wedge\left(e^{\prime} |
- | + | |ENABLED $A$ |$[$ An step is possible | |
- | <m>\langle A \rangle | + | |UNCHANGED $e$ |$\left[e^{\prime}=e\right]$ | |
- | + | |$A \cdot B$ |$[$ Composition of actions | |
- | < | + | |
- | + | ||
- | <m>\text{unchanged | + | |
- | + | ||
- | <m>A \cdot B [\text{Composition of actions}]</m> | + | |
===== Temporal Operators ===== | ===== Temporal Operators ===== | ||
- | <m>\square F [F \text{ is always true}]</m> | + | $$ |
- | + | \begin{array}{ll} | |
- | <m>\Diamond | + | \square F & {[F \text { is always true }]} \\ |
- | + | \diamond | |
- | <m>\text{WF}_e(A) [\text{Weak fairness for action } A]</m> | + | \mathrm{WF}_{e}(A) & {[\text { Weak fairness for action } A]} \\ |
- | + | \mathrm{SF}_{e}(A) & {[\text { Strong fairness for action } A]} \\ | |
- | <m>\text{SF}_e(A) [\text{Strong fairness for action } A]</m> | + | F \sim G & {[F \text { leads to } G]} |
+ | \end{array} | ||
+ | $$ | ||
===== User-Definable Operator Symbols ===== | ===== User-Definable Operator Symbols ===== | ||
- | === Infix Operators === | + | ===== Infix Operators |
- | < | + | ^$+^{(1)}$ |
+ | |$\div^{(1)}$ | ||
+ | |$\oplus^{(5)}$ | ||
+ | |(1) $^{(1)}$ | ||
+ | |$\prec$ | ||
+ | |$\ll$ | ||
+ | |$\sqsubset$ | ||
+ | |$\subset$ | ||
+ | |$\vdash$ | ||
+ | |$\sim$ | ||
+ | |$\bigcirc$ | ||
+ | |$\propto$ | ||
- | < | + | Postfix Operators (7) |
- | < | + | $\sim \quad$ - $#$ |
- | **Postfix Operators: | + | - Defined by the Naturals, Integers, and Reals modules. |
+ | - Defined by the Reals module. | ||
+ | - Defined by the Sequences module. | ||
+ | - $x^{\wedge} y$ is printed as $x^{y}$. | ||
+ | - Defined by the Bags module. | ||
+ | - Defined by the $T L C$ module. | ||
+ | - $e^{\wedge}+$ is printed as $e^{+}$, and similarly for ${ }^{\wedge} | ||
===== Precedence Ranges of Operators ===== | ===== Precedence Ranges of Operators ===== | ||
- | The relative precedence of two operators is unspecified if their ranges overlap. | + | The relative precedence of two operators is unspecified if their ranges overlap. |
- | **Prefix Operators: | + | |
- | <m> ¬ 4–4</ | + | |
- | **Infix Operators:** | + | {{https://cdn.mathpix.com/cropped/ |
- | < | + | - Record field (period). |
- | <m> +− . 2−2</m> | + | )) |
- | ===== Operators Defined in Standard Modules ===== | + | ===== Operators Defined in Standard Modules. ===== |
- | Modules Naturals, Integers, Reals: | + | Modules Naturals, Integers, Reals |
- | **+** **-** < | + | $$ |
+ | \begin{aligned} | ||
+ | & +\quad-{ }^{(1)} \quad * \quad /^{(2)} \quad \sim^{-(3)} \quad \text {.. } \quad \text { Nat } \quad \text { Real }^{(2)} \\ | ||
+ | & \div \quad \% \quad \geq \quad>\quad \text { Int }^{(4)} \quad \text { Infinity }{ }^{(2} | ||
+ | \end{aligned} | ||
+ | $$ | ||
- | Modules Sequences: | + | - Only infix - is defined in Naturals. |
+ | - Defined only in Reals module. | ||
+ | - Exponentiation. | ||
+ | - Not defined in Naturals module. | ||
- | **\circ Head SelectSeq SubSeq Append** | + | Module Sequences |
- | Modules FiniteSets: | + | ^$\circ$ |
+ | |Append | ||
- | **IsFiniteSet Cardinality** | + | ===== Module FiniteSets |
- | Modules | + | Module |
- | <m>\oplus | + | ^$\oplus$ ^BagIn ^CopiesIn |
+ | |$\ominus$ | ||
+ | |$\sqsubseteq$ | ||
+ | |BagCardinality | ||
- | Modules | + | Module |
- | **RTBound RTnow now** | + | RTBound RTnow now (declared to be a variable) |
- | Modules TLC: | + | Module $T L C$ |
- | **:> @@ Print Assert JavaTime SortSeq** | + | $:>$ Print Assert JavaTime |
===== ASCII Representation of Typeset Symbols ===== | ===== ASCII Representation of Typeset Symbols ===== | ||
- | < | + | ^ $/$ or $\backslash]$ |
- | + | | $\sim$ or $\backslash | |
- | <m> \forall | + | | | | $\notin$ |
- | + | | $<< | |
- | < | + | | $< |
+ | | | ||
+ | | | | $\gg$ | $\backslash g g$ | ||
+ | | | | | ||
+ | | | | $\succeq$ | ||
+ | | | | | ||
+ | | | | $\supset$ | ||
+ | | | | | ||
+ | | | eteq | $\sqsupseteq$ | ||
+ | | $1-$ | | $\dashv$ | ||
+ | | $\mid=$ | ||
+ | | | ||
+ | | | ||
+ | | | | $\sqcup$ | ||
+ | | $(+)$ or 1 | ||
+ | | $(-)$ or 1 | ||
+ | | (.) or 1 | | 2 | | ||
+ | | $(\backslash X)$ or | ||
+ | | (/) or 1 | | | ||
+ | | | ||
+ | | $\backslash | ||
+ | | ]_v | ||
+ | | $W F_{-} v$ | ||
- | < | + | - $s$ is a sequence of characters. |
+ | - $x$ and $y$ are any expressions. | ||
+ | - a sequence of four or more - or $=$ characters. | ||