This is an old revision of the document!
Summary
You can access to a quick pdf summary about the tla+ language here: https://lamport.azurewebsites.net/tla/summary-standalone.pdf.
This is a web accessible version.
Summary of TLA+
Module-Level Constructs
module M
Begins the module or submodule named M.
extends M1, ..., Mn
Incorporates the declarations, definitions, assumptions, and theorems from the modules named M1, ..., Mn into the current module.
constants C1, ..., Cn
Declares the Cj to be constant parameters (rigid variables). Each Cj is either an identifier or has the form C( , ..., ), the latter form indicating that C is an operator with the indicated number of arguments.
variables x1, ..., xn
Declares the xj to be variables (parameters that are flexible variables).
assume P
Asserts P as an assumption.
F(x1, ..., xn) Δ = exp
Defines F to be the operator such that F(e1, ..., en) equals exp with each identifier xk replaced by ek. (For n = 0, it is written F Δ = exp.)
f[x ∈ S] Δ = exp
Defines f to be the function with domain S such that f[x] = exp for all x in S. (The symbol f may occur in exp, allowing a recursive definition.)
instance M with p1 ← e1, ..., pm ← em
For each defined operator F of module M, this defines F to be the operator whose definition is obtained from the definition of F in M by replacing each declared constant or variable pj of M with ej. (If m = 0, the "with" is omitted.)
theorem P
Asserts that P can be proved from the definitions and assumptions of the current module.
local def
Makes the definition(s) of def (which may be a definition or an instance statement) local to the current module, thereby not obtained when extending or instantiating the module.
The Constant Operators
Logic
Sets
Functions
Records
Tuples
Miscellaneous Constructs
if p then e1 else e2 [e1 if p is true, else e2]
case p1 → e1 ... pn → en
case p1 → e1 ... pn → en 2 other → e
let d1 Δ = e1 ... dn Δ = en in e
Action Operators
Temporal Operators
User-Definable Operator Symbols
Infix Operators
Postfix Operators:
Precedence Ranges of Operators
The relative precedence of two operators is unspecified if their ranges overlap. Prefix Operators:
Infix Operators:
Operators Defined in Standard Modules
Modules Naturals, Integers, Reals:
+ -
Modules Sequences:
\circ Head SelectSeq SubSeq Append
Modules FiniteSets:
IsFiniteSet Cardinality
Modules Bags:
Modules RealTime:
RTBound RTnow now
Modules TLC:
:> @@ Print Assert JavaTime SortSeq